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ABSTRACT 


The usual idealizations in cosmology, which are used with the general 
theory of relativity for deriving the cosmological equations, lead to the 
ideal of a partitioned universeand to the boundary conditions necessary for 
isolating a small region or cell of space. An isolated cell, infinitesimally 
small and embedded in flat space, forms the basis of a microcosmic model 
of the universe. An internal observer perceives an expanding unbounded 
universe and applies the same theoretical concepts commonly used in 
macrocosmic models. He is also free to work within the framework of 
special relativity theory, and from the first law of thermodynamics and the 
equations of hydrodynamics is able to derive the cosmological equations 
without the aid of general relativity and without making any approximations. 
The application of the cosmological principle to a universe containing a 
uniform perfect fluid accounts for the complete equivalence of the micro­
cosmic model with the usual macrocosmic models. In many of i ts  proper­
ties the microcosmic model closely resembles Newtonian cosmology; it 
avoids however the ambiguous nature of the gravitational field in a uniform 
unbounded fluid and is also not limited in its treatment to a pressure-free 
universe. 
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COSMOLOGY WITHOUT GENERAL RELATIVITY 

by 
E. R. Harrison* 

Goddard Space Flight Center 

INTRODUCTION 

The cosmological equations a r e  normally and properly derived from general relativity theory 
with the aid of the cosmological principle. The possible models of the universe a r e  then classified 
according to whether the curvature constant of the metric is positive, zero, or  negative. 

In 1934, McCrea and Milne (Reference 1) used Newtonian theory to derive the cosmological 
equations for a universe in which the pressure is zero. Although a Newtonian treatment is not 
entirely free from ambiguity (References 2, 3 and 4 )  it is nevertheless valuable for revealing the 
implicit simplicity of the cosmological equations. The success of McCrea and Milne's work raises  
the question: What adaptation or  extension of the Newtonian treatment is needed in the more general 
case of a non-zero pressure (without, of course, the help of supplementary theorems from general 
relativity, as in Reference 5 ) ?  It is assumed that the universe contains a perfect fluid and is homo­
geneous and isotropic at every point in space. The idea of a partitioned universe then leads to the 
boundary conditions necessary for isolating a small region o r  cell of space. Such a cell, infinitesi­
mally small, isolated and embedded in flat space, forms the basis of a microcosmic model of the 
universe. When the fluid is pressure-free, the model obeys the Newtonian equations accurately. 
This method avoids the ambiguous nature of the gravitational field in a uniform and infinitely ex­
tended Newtonian universe. By working within the framework of special relativity we furthermore 
obtain the cosmological equations in the more general case of a non-zero pressure. 

It is emphasized that the general theory of relativity provides the most elegant and effective 
approach to cosmology, and the approach outlined in this discussion does not pretend in any way to 
supplant its superior position. The present approach offers insight into the physical nature of the 
cosmological equations and of the idealizations on which they a r e  founded. 

In the second section of this paper the cosmological principle is considered briefly and also the 
results from general relativity for an idealized universe. In the third section the notion of a parti­
tioned universe is outlined, and this leads in the fourth section to a study of the microcosmic model. 

*National Academy of Sc iences  -National Research Council Resident Research Associate on leave from the Rutherford High Energy
Laboratory, Chilton, Didcot, Berkshire, England. 



Some comparisons and comments a r e  made in the fifth section concerning Newtonian cosmology, 
and the physics of the microcosmic model a r e  discussed in the sixth section. 

THE COSMOLOGICAL PRINCIPLE AND GENERAL RELATIVITY 

If space has uniform curvature the line-element is 

ds2 = cZdt2 - R2(t) (dr’ + rZdO2 + rz sinZ 8 d +2) .1
(1 + krz)2 ( 1 )  

In this, metric intervals of cosmic time, t, are measured along world-lines orthogonal to a spatial 
hypersurface of uniform curvature which is mapped with r ,  8, + comoving coordinates. The curva­
ture constant is k = 0, f 1. 

The cosmological principle states that at any instant of cosmic time the universe appears the 
same for all comoving observers. Generally, the local environment of an observer is irregular. 
Matter tends to aggregate into objects of stellar and galactic size and is rarely distributed uni­
formly in relatively small regions of space. The average energy density E ( r ,  8,4)  in a region of 
volume V is 

The cosmological principle is a meaningful postulate when 

where 8~ is a negligible quantity, u is everywhere small in comparison with the observable universe, 
and ~ ( t )is the average energy density of the universe. The small-scale irregularities a r e  smoothed 
out as V increases and eventually < E >  becomes E(t) and the center of mass of U is stationary in the 
comoving coordinate system. 

Instead of the actual universe it is usual to consider an idealized universe that is isotropic and 
homogeneous at all points in conformity with the Robertson line-element Equation 1, and contains a 
uniform perfect fluid of proper energy density E(t) and isotropic pressure p(t). The energy-mo­
mentum tensor Ti for the perfect fluid in an idealized universe is 
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The line-element Equation 1 and the energy-momentum tensor Equation 3 a r e  geometrical and 
kinematical interpetations of the cosmological principle, and all that remains is to determine R( t )  

in Equation 1 with the general relativity equation 

where G is the gravitational constant. The solution of this equation, given Equations 1 and 3,  is 

8nC k2 + kc2 
- �  = 3 
C2 R2 

8nG - 2Rii ik2 + kc2 
-P - -
C2 R2 

where dots denote differentiation with respect to time. These a r e  the well-known cosmological 
equations, and they a r e  often written in the alternative form 

R2 = 3 p R 2  - kc2 ,8 4  

where p = E / C ~is the mass density. 

A PARTITIONED UNIVERSE 

Let the universe be divided into cells, of volume V ,  with comoving imaginary partitions that 
a r e  perfectly reflecting for incident particles and radiation (Reference 6). In the actual universe 
each cell must be at least as large as u to contain average conditions, whereas in an idealized 
universe V has in principle no lower limit. The presence of the non-absorbing massless partitions 
in no way affects either the properties of the universe or the internal state of the cells. The cos­
mological equations apply to an idealized universe and in seeking an alternative derivation of these 
equations we must adopt the same idealizations. It follows that the cells, no matter how small they 
a r e  made, have at each instant of cosmic time contents which a r e  in an identical state. 

If now all partitions are removed except for the boundaries of a given cell, an observer inside 
this cell discovers conditions identical with those discovered by an observer anywhere outside. 
The internal observer, although isolated, is in no way handicapped in his study of the universe. 
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For example, owing to the repeated reflection of photons by the expanding walls, he observes red-
shifted radiation sources in the same way as the external observer. Provided his boundary condi­
tions a r e  properly maintained it will have no effect if the rest of the universe ceases to exist. 

The internal state of a cell is independent of the volume chosen and therefore we are free to 
consider a cell of an infinitesimally small volume. As v - 0, the metric of the cell becomes flat, 
and the internal state remains unchanged if the cell is isolated and embedded in the flat metric of 
special relativity. The cell remains a faithful representation of the idealized universe and can be 
regarded as a microcosmic model. 

THE MICROCOSMIC MODEL 

The notion of a vanishingly small microcosm of the universe embedded in a flat metric is no 
more than an interpretation of the cosmological principle applied to a perfect fluid. The micro­
cosmic model, however, allows us to deal with a range of comological problems without resorting 
to general relativity. 

Validity of the Newtonian Approximations 

We assume for convenience that the cell is spherical and has a radius a. We consider always 
a cell of infinitesimal radius such that the metric is flat. The comoving coordinates of an element 
of fluid in the cell a r e  

where r is the distance from the center of the cell, r o  is the distance at time to, and s is a function 
of time with S(to) = 1. A cell possessing uniform properties preserves its uniformity as it dilates 
or  contracts. The velocity of a fluid element is 

From general relativity theory the metric in the weak field approximation is 

ds2 = dt2 (c2 t 214~) - dr2 - r2 (do2 t s i n 2  0 d+2) 

for  VZ << ~ 2 ,21#1 << c2, where $I is the gravitational potential. Hence the metric is flat when 
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and these conditions can always be achieved by selecting a cell of sufficiently small radius a. Thus 
as a - 0 (this does not mean that a cell of initially finite radius shrinks to zero as this would violate 
the conditions Equation 9, but means that a cell of vanishingly small radius is chosen and isolated 
from the universe), the geodesic equations of the fluid elements are accurately given by the New­
tonian equations of motion: 

VI), or Sro = -2 

r The conditions (Equation 9) for a flat metric also justify the use of Poisson’s equation (for 
example, p. 200 of Reference 7). However, the sources of the gravitational field have so  far not 
been specified. Although the Newtonian approximations apply quite accurately to the fluid motion 
we a r e  still working within a special relativity framework and therefore energy has an equivalent 
mass. The ratio of the total kinetic energy to EV is of the order S2a2&2, and the ratio of the 
gravitational potential energy to EV is of the order Gpa’, and according to Equation 9 the equivalent 
mass contribution of both the kinetic and potential energies is vanishingly small. 

Energy Equation 

From the first law of thermodynamics, dE t p d V  = 0,where dE is the increase in the internal 
energy of the cell, pdv is the work done in expanding against pressure p, and SQ = 0 because no 
heat crosses the cell boundary. The energy in the cell is E = E V ,  and therefore the adiabatic equa­
tion is 

0 ,  


since V S 3 .  Equation l l a  o r  its alternative form 

can be obtained in special relativity using T;,Y = 0 ( p  = 4) and V/C - 0. Equation l l a  does not 
imply that entropy is necessarily constant. Variations in the composition of the fluid can be as­
sociated with entropy changes (Chapter IX of Reference 7). 

Boundary Stresses 

Outside the microcosmic cell the pressure is zero and the spherical boundary, unlike the 
imaginary partitions in an idealized universe, is now real in the sense that it must exert an in­
wardly directed force to maintain the cell in a quasi-static state. This boundary force contributes 
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a stress-energy to the total energy of the cell. In some respects the cell is analogous to a soap 
bubble in a vacuum; the surface stresses contribute an energy of 3pV. The relativistic form of the 
virial theorem is 

i 
where the summation is over all particles in V, of momentum 6 and mass m interacting with each 
other through forces $, and the surface integral, equal to 3pV, is the energy of the boundary s t resses .  

3.The virial theorem is commonly used for evaluating the kinetic and interaction energies of an en­
closed gas in terms of the boundary stress-energy (Reference 8), and this stress-energy is then 
excluded from the kinetic properties of the fluid since it exists merely to preserve the fluid in an 
isolated, quiescent state. When the pressure vanishes at the boundary, as for a star, the left-hand 
side of Equation 12 contains a t e r m  - Jr . Op dV = 3 JpdV, and this stress-energy is equal to the 
negative gravitational potential energy (Reference 9). In the microcosmic model the fluid is not 
gravitationally bound but is confined by a system of s t resses  that allow the density and pressure to 
remain uniform. Either we imagine these stresses applied to a single spherical boundary or to an 
arrangement of partitions within the cell; in any event, the s t resses  contribute 3pV to the energy of 
the cell or 3pv/c2 to its mass. If these s t r e s ses  a r e  neglected the fluid will disperse because of 
the random motions of its particles and the essential properties of the model will be lost. 

The mass of the microcosmic cell i s  ( p  + 3plcZ)v. Using general relativity theory, Tolman 
(p. 235 of Reference 7)  derives a similar expression for the energy of a quiescent mass, and 
Whittaker (Reference 10) shows that in effect p t 3p/c2 is the density of the gravitational mass. 

Although the fluid velocity is small the individual particles composing the fluid may have 
relativistic speeds; the stress-energy contribution is then quite important, To suppose that the 
stress-energy resides solely in a spherical boundary, as in the case of a soap bubble, creates the 
anomaly that the boundary and the adjacent fluid have different equations of motion. Hence we must 
suppose that in addition to the spherical boundary there is an indefinitely large number of internal 
partitions and the stress-energy is uniformly distributed and has a value of 3p per unit volume. 
Poisson's equation is therefore 

U
v2$b = 4& ( p  + 3p/c2) (13) 

Equations of Motion 

Poisson's equation and the equations of energy and motion a r e  

V2$b = 4 4  ( p  + 3p/c2) , 
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a t* = - d iv  7 (p  + p/c2) , 

Since i; = s Y o ,  the equation of motion becomes 

4 
47G 

3;= 47~G 
( p  + 3P/C2) s = 3dS (Ps’) (14) 

I? 
using Equation 13 and l la or l l b .  Integrating Equation 14, we find 

I 

where C is a constant for  all fluid elements. S is arbitrary within a constant multiplying factor 
depending on the time t o  chosen to satisfy S (to)= 1 . By redefining s such that S( t ) = R( t ) I CI “ / c ,  

S (to) = 1 CI “IC.Equation 15 becomes 

where k = 0, f 1 .  This is the integrated equation of motion of the microcosmic model, and because 
it applies for all infinitesimally small cells it is also true for the idealized universe. Poisson’s 
Equation 13 cannot be transferred from the microcosmic model, and the only surviving Equation 
l l a  or l l b  applicable to all cells and also true for the idealized universe is 

Equations 16 and 17 a r e  the cosmological Equations 6a and 6b, and have been derived by means of 
the microcosmic model without general relativity theory. 

NEWTONIAN COSMOLOGY 

The equations used in Newtonian cosmology (References 1, 11and 12) a r e  Equations 10, 11and 
13 with the pressure equal to zero. If the gravitational force and velocity fields a r e  isotropic for a 
given inertial observer, they a r e  also isotropic for all non-inertial observers moving with the fluid 
(Reference 3 and 13). The fluid elements have velocities l e s s  than, equal to, or greater than the 
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escape velocity, and their trajectories are respectively elliptical (k = + l), parabolic (k = 0) or 
hyperbolic (k = - l ) ,  corresponding to elliptical, flat, or hyperbolic space. Newtonian cosmology 
provides an admirable description of the contemporary universe in which the pressure is relatively 
small. Callan, Dicke, and Peebles (Reference 14) point out that the Newtonian treatment is a per­
fectly correct method. They considera  spherical volume of the universe sufficiently small to 
justify the Newtonian approximations. They do not isolate this spherical element and embed it in 
flat space as in the microcosmic model. 

Consider two observers A and B comoving with the fluid. Let A project a test  particle a A 

towards B, and let B project a tes t  particle p towards A at the same proper speed and at the same 
instant of cosmic time. In an isotropic and homogeneous universe a must arr ive at B at the same '?i

I 
instant and with the same proper speed as p a r r i v e s a t  A. Let us now suppose that A and B are 

1 
both centers of isotropic gravitational fields. Then A will expect a to arr ive at B later than p 
arr ives  at A; and vice versa, B will expect p to arr ive at A later than a arr ives  at B. Both cannot I 

Ibe correct, and the concept of a gravitational field necessarily implies that A and B a r e  strictly not 
equivalent. In Newtonian cosmology this loss of equivalence is expressed by the fact that all ob­
servers  a r e  non-inertial with respect to each other. 

A possible objection to Newtonian cosmology is the ambiguous nature of the gravitational field 
in a uniform unbounded fluid. Layzer (Reference 2) attempts to avoid this difficulty by considering 
a spherical volume of a pressure-free universe, of arbitrary size and embedded in empty space, 
and finds it necessary to use general relativity theory. (The microcosmic model is in fact a com­
bination of the ideas of Dicke e t  al. and Layzer.) McCrea (Reference 3) avoids the difficulty with 
the suggestion that the Newtonian universe is regarded as a bounded but arbitrarily large system. 
For a closed boundary Dirichlet conditions a r e  sufficient to establish everywhere a unique grav­
itational potential; moreover, if  the boundary is spherical, it is reasonable to assume that its center 
is inertial. Using Newtonian theory, the cosmological equations a r e  derived self- consistently and 
most simply for the central observer, and the validity of the equations for all observers is deduced 
from kinematic considerations. Any non- central observer, retaining the same boundary conditions, 
can derive identical equations from Newtonian theory if he allows for his non-inertial framework. 
This implies that such an observer is aware of the locations of a unique inertial center from which 
all matter in the universe is diverging. 

In Newtonian cosmology the universe is spatially bounded and therefore contains a unique 
central observer; this conclusion seems inescapable. Such a universe fails to conform with the 
mediaeval form of the cosmological principle (Reference 15): "the fabric of the world" has "its 
center everywhere and its circumference nowhere". Many may think that this is of no great 
consequence. 

DISCUSSION 

The usual idealizations employed in cosmology lead naturally to the idea of a partitioned 
universe containing infinitesimally small cells. The walls of each cell are perfectly smooth and 
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reflecting and an observer inside any cell perceives conditions identical with those perceived in the 
absence of the partitions. If his cell contains discrete sources of radiation, he observes, because of 
multiple reflections, an extended, expanding, and apparently unbounded universe of discrete sources. 
To this multiple-image universe he applies the cosmological principle and deduces that the universe 
has a uniform metric given by Equation 1. If he is aware of the reflecting walls, he can use periodic 
boundary conditions for calculating the red-shift, and for a highly relativistic particle, photon, or 
neutrino, a s se r t  that 

? 
and the red-shift is 

where A is the wavelength. Or,using special relativity, the total coordinate path length is 

and for two light rays emitted by the same source at times t and t f d t  and received at t and 
t 2  + dt,  , respectively, the coordinate path length is invariant and therefore 

in agreement with Equation 18. Or, ignoring the reflecting walls and using the general line-element 
Equation 1 for the multiple-image universe, he again derives the red-shift Equation 18, and further­
more, deduces a luminosity-distance and the distances by volume and apparent size, and finally uses 
general relativity as the rational theory to obtain the cosmological equations. 

But an internal observer need not use general relativity theory to obtain the cosmological equa­
tions if he supposes that his infinitesimally small cell terminates at its boundary in flat, empty 
space. This is the microcosmic model of the universe. Provided the fluid contained in the cell is 
pressure-free, the Newtonian treatment is valid and leads to perfectly correct results. When, how­
ever, the pressure is not zero, s t resses  must be incorporated in the cell to maintain it in a quasi-
static state. If the pressure is large, the individual particle motions and the interacting fields 
require special relativity theory for their treatment. From the point of view of the microcosmic 
model the structural s t resses  needed for isolation in flat space increase the energy of the cell, 
and the mass-equivalent is an additional source of the gravitational field. When this increased 
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gravitational field is used in the Newtonian equation of motion for the fluid elements, we derive, 
with the aid of the first law of thermodynamics, the cosmological equations. 

As in  the case of Newtonian cosmology, the microcosmic model gives a physical interpretation 
of the cosmological equations. By focusing attention on a representative infinitesimally small ele­
ment of the universe, it reveals and exploits the far-reaching nature of the idealizations on which 
cosmology is founded. 

(Manuscript received July 30, 1965) 
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